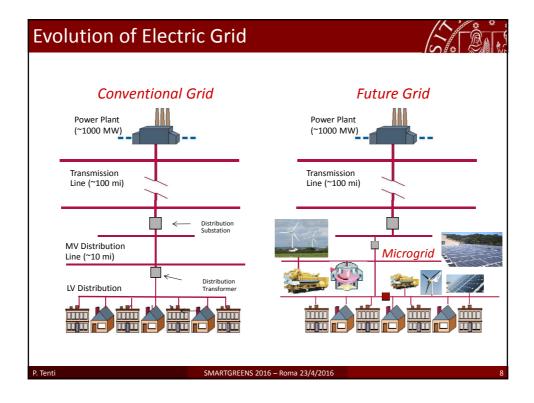
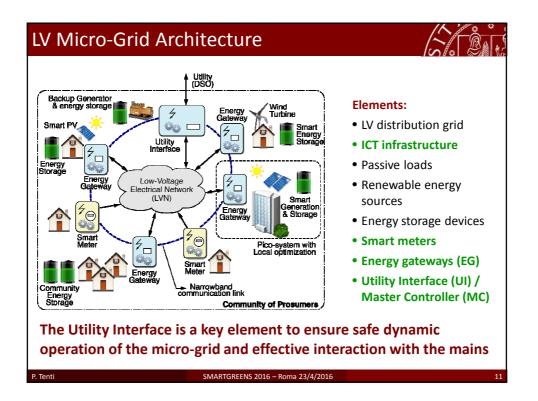
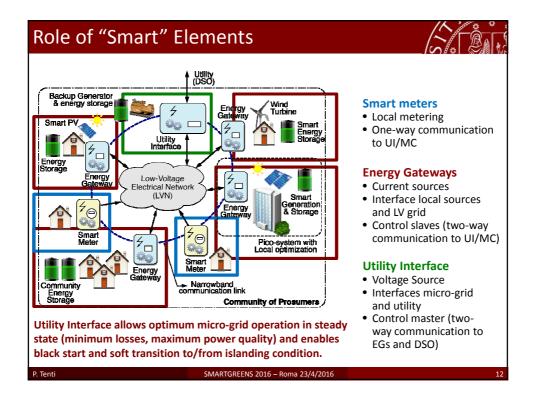
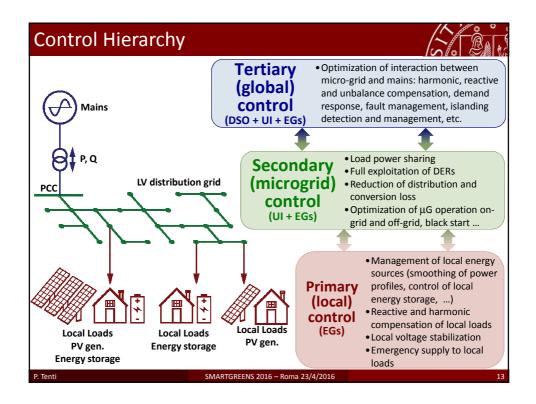
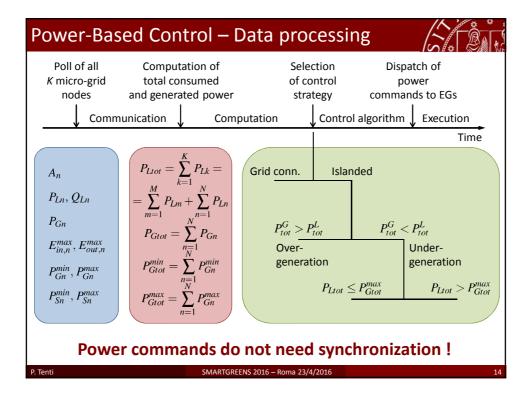

Outline
 Diffusion of Renewable Energy Sources (RES) Evolution of distribution grid architecture Role and impact of micro- and nano-grids Architecture and components of low-voltage micro-grids Control hierarchy in low-voltage micro-grids Power-based control of low-voltage micro-grids Off-line and real-time simulation Experimental results What comes next Conclusions
P. Tenti SMARTGREENS 2016 – Roma 23/4/2016











Micro & Nano-grids: Technological Challenges
 Implement cheap ICT platforms for distributed control and communication Restructure network protections Pursue flexibility and scalability (from buildings to townships) Develop layered architectures (microgrids as tiles of larger patchworks) Pursue energy efficiency at any levels Integrate micro-grid control and domotics Assure data security and privacy Revise accounting principles and methodologies Retrofit existing plants
TECHNOLOGY IS NOT THE BOTTLENECK !
P. Tenti SMARTGREENS 2016 – Roma 23/4/2016 1

Power-Based Contro	So Br		
Control features	Hierarchic control level	Agents	Objectives
 Local voltage support Full exploitation of distributed energy sources including storage Full exploitation of power 	Primary Primary/Secondary	EGs UI & EGs	 Cooperative operation of DERs Minimum power loss Fast dynamic response
converter control capability (active, reactive, unbalance and distortion power control) • Optimum power sharing	Primary / Secondary Secondary	UI & EGs UI & EGs	 Control of voltage profiles Micro-grid to operate as a single aggregate
 Transition on-grid ↔ off-grid Demand response 	Tertiary Tertiary	UI UI & EGs	Islanded operation
 Scalability of arch Asynchronous cor Broadcasted powe EGs operated as c Controllable powe 	ation of energy sources itecture itrol of distributed pow er commands (one-way urrent sources (grid im er factor at utility termi e (micro-grid responds t	er sources communicati pedances not nals	ion) affected)

What comes next – Energy SuperNet

Active integration of micro-grids in MV distribution grids Aim: to take full advantage of distributed control capability

- Control of amplitude and direction of active and reactive power flow
- Integration and management of community energy storage
- Dynamic control of voltage profiles
- Planning and management of demand response
- Active protection in case of fault
- Improved distribution efficiency
- Synergistic control and exploitation of distributed power sources
- Extended flexibility of operation

P. Tenti

- Implementation of layered architectures
- Increased hosting capacity of existing infrastructure

GREAT DEVELOPMENT EFFORT, BUT NO BOTTLENECKS IN TECHNOLOGY !

SMARTGREENS 2016 - Roma 23/4/2016

Smart micro-grids: a win-win solution

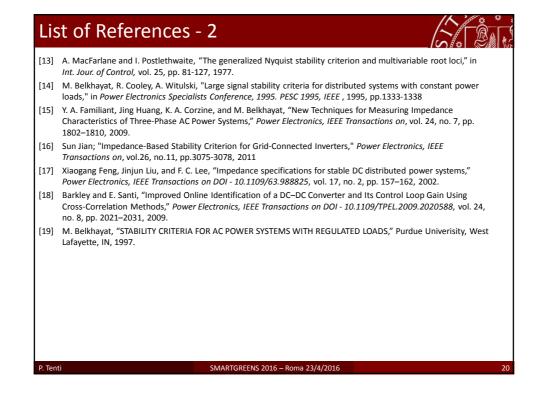
END-USERS (prosumers) take advantage of:

- Energy savings, reduced electricity bill, increased power quality
- Upgrade of role in electrical market, increased negotiation capability

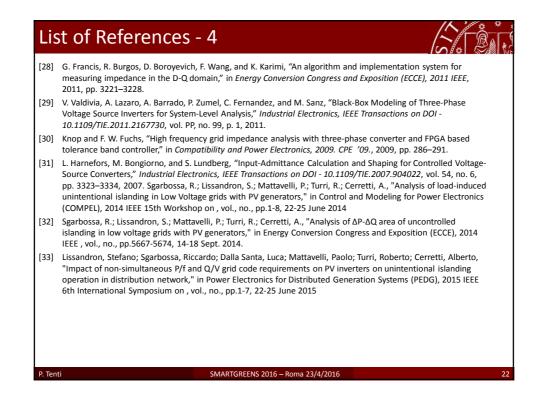
DSOs and ESCOs take advantage of :


- Aggregation of end-users into efficient and programmable macro-users
- Participation of end-users to investments for distributed energy generation, storage and management
- Improved flexibility and efficiency of distribution network operation

ENVIRONMENT, SOCIETY & ECONOMY take advantage of:


- Low-carbon energy
- Active citizen participation to energy market
- New services for prosumers' community (warrants, regulators, aggregators, traders, app developers Internet-like)

Traditional oligarchic electric market evolves toward democracy !


SMARTGREENS 2016 – Roma 23/4/2016

List of References - 1					
[1] [2]	G. Meneghesso, "Solar Energy Conversion: Photovoltaic" Levi Cases "Retreat Day" Jan 18, 2016. A. Cerretti, "Analysis of the coordination of interface protection system with Distributed Energy Resources compliant with most recent evolution of the standards: the unintentional islanding case", Symposium on Smart Inverter Testing and Interoperability, Bilbao, October 2015				
[3]	D. Boroyevich, "REN Miniconsortium", CPES Conference (<u>www.cpes.vt.edu</u>)				
[4]	P. Mattavelli, D. Boroyevich, "Small-Signal Stabiliy and Sybsystem Interactions in Three-Phase Nano-grids", Tutorial at 2012 CPES Conference, Blackburg, VA				
[5]	D. Boroyevich, Class notes from ECE5274				
[6]	Peng Xiao, G. Venayagamoorthy, and K. Corzine, "A Novel Impedance Measurement Technique for Power Electronic Systems," in <i>Power Electronics Specialists Conference, 2007. PESC 2007. IEEE</i> , 2007, pp. 955–960.				
[7]	L.R. Lewis, B.H. Cho, F.C. Lee, B.A. Carpenter, "Modeling, analysis and design of distributed power systems," in <i>Power Electronics Specialists Conference, 1989. PESC 1989. IEEE</i> , 1989, pp.152-159.				
[8]	S.Y. Erich, W.M. Polivka, "Input filter design for current-programmed regulators," in <i>Applied Power Electronics Conference and Exposition (APEC), 1990 Fifth Annual IEEE</i> , 1990, pp. 781–791.				
[9]	Y. Jang, R.W. Erickson, "Physical origins of input filter oscillations in current programmed converters," <i>Power Electronics, IEEE Transactions on</i> , vol.7, no.4, pp.725-733, 1992.				
[10]	Byungcho Choi; B.H. Cho, , "Intermediate line filter design to meet both impedance compatibility and EMI specifications," <i>Power Electronics, IEEE Transactions on</i> , vol.10, no.5, pp.583-588, 1995.				
[11]	C.M. Wildrick, F.C. Lee, B.H. Cho, B. Choi, "A method of defining the load impedance specification for a stable distributed power system," <i>Power Electronics, IEEE Transactions on</i> , vol.10, no.3, pp.280-285, 1995.				
[12]	Feng Xiaogang; Ye Zhihong; Xing Kun; F.C. Lee, D. Borojevic, "Impedance specification and impedance improvement for DC distributed power system," in <i>Power Electronics Specialists Conference, 1999. PESC 1999. IEEE</i> , 1999, pp.889-894.				
P. Ten	ti SMARTGREENS 2016 – Roma 23/4/2016 19				

List of References - 3 [20] M. Sumner, B. Palethorpe, D. W. P. Thomas, P. Zanchetta, and M. C. Di Piazza, "A technique for power supply harmonic impedance estimation using a controlled voltage disturbance," Power Electronics, IEEE Transactions on, vol. 17, no. 2, pp. 207-215, 2002. [21] Y. L. Familiant, K. A. Corzine, J. Huang, and M. Belkhayat, "AC Impedance Measurement Techniques," in Electric Machines and Drives, 2005 IEEE International Conference on, 2005, pp. 1850-1857. [22] Y. L. Familiant, "AC impedance measurement techniques in power systems," University of Wisconsin, Milwaukee, 2006. Jian Sun, "AC power electronic systems: Stability and power quality," in Control and Modeling for Power [23] Electronics, 2008. COMPEL 2008. 11th Workshop on, 2008, pp. 1-10. [24] M. L. Gasperi, "AC power line impedance monitoring method and system," U.S. Patent 716427516-Jan-2007. [25] R. Burgos, D. Boroyevich, F. Wang, K. Karimi, and G. Francis, "Ac stability of high power factor multi-pulse rectifiers," in Energy Conversion Congress and Exposition (ECCE), 2011 IEEE, 2011, pp. 3758-3765. [26] Z. Staroszczyk, "Accuracy problems in on-line one-phase distribution/load system identification task," in Industrial Electronics, 1996. ISIE '96., Proceedings of the IEEE International Symposium on, 1996, vol. 1, pp. 354-357 vol.1. [27] S. D. Sudhoff, S. F. Glover, P. T. Lamm, D. H. Schmucker, and D. E. Delisle, "Admittance space stability analysis of power electronic systems," Aerospace and Electronic Systems, IEEE Transactions on DOI - 10.1109/7.869516, vol. 36, no. 3, pp. 965-973, 2000. SMARTGREENS 2016 - Roma 23/4/2016

