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Introduction

• The world has seen significant advances in wireless communication 
that have made it possible for vehicles, travelers, and infrastructure 
to be connected 
– Connected Vehicles (CVs), Connected Travelers (CTs), and Connected 

Infrastructure (CI)
• In addition vehicle automation has added a dimension of vehicle 

control that did not exist before
– Connected Automated Vehicles (CAVs)

• Global warming is a challenge that we collectively have to address
• This presentation describes research attempts to use CAVs and CTs 

to reduce the transportation system carbon footprint
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Collaborative Optimization and Planning for 
Transportation Energy Reduction (COPTER)
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Demonstrated: Providing the information to 10% of the travelers results in a 5.5% participation producing a 4% 
reduction in energy usage and 20% reduction in delay



Multi-Modal Agent-based Simulation Model
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Simulation Coordinator
Tracks traveler through simulations

BPSim
Simulates walking and biking

MesoSim
Simulates local roads

RailSim
Simulates LA Metro Rail lines

INTEGRATION
Simulates arterials and highways



Modeling of Road Network

• The proposed model attempts to achieve high fidelity 
modeling of highly traveled roadways and low fidelity on other 
roadways
– Computationally efficient modeling of large networks

• A hybrid simulation approach is used
– Microscopic:  

• Enables the highest possible accuracy.  
• Models freeways, major arterials, and minor arterials

– Mesoscopic:
• Computationally efficient modeling of large networks
• Used for local roads
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10,734 links

170,000 links



Modeling of Road Network
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Modeling of Rail Systems
• Objective:

– Develop a longitudinal train dynamics model that captures realistic train 
longitudinal motion and can be calibrated without any mechanical engine 
data, making it ideal for implementation in microscopic transportation 
simulation models

• Model developed using empirical data:
– Data from the Tri-County Metropolitan Transportation District of Oregon 

(TriMet). 
• Information for the Metropolitan Area Express (MAX) Blue Line where the train trajectories 

were collected
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Modeling of Rail Systems

• Virginia Tech Comprehensive Power-based Energy Model (VT-CPEM)
– Energy consumption:

• 𝑃𝑃 𝑡𝑡 = 𝑅𝑅 𝑡𝑡 + 1+𝜆𝜆 𝑚𝑚𝑚𝑚 𝑡𝑡
3600𝜂𝜂𝑑𝑑

𝑣𝑣(𝑡𝑡)

– Energy regeneration: 

• 𝜂𝜂𝑟𝑟𝑟𝑟 𝑡𝑡 = � 𝑒𝑒
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)𝑎𝑎(𝑡𝑡
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∀ 𝑃𝑃 𝑡𝑡 < 0
0 ∀ 𝑃𝑃 𝑡𝑡 ≥ 0

• 𝑃𝑃𝐵𝐵 𝑡𝑡 = �
𝑃𝑃𝑊𝑊 𝑡𝑡

𝜂𝜂𝐷𝐷·𝜂𝜂𝐸𝐸𝐸𝐸�𝜂𝜂𝐵𝐵
+ 𝑃𝑃𝐴𝐴 ∀ 𝑃𝑃𝑊𝑊 𝑡𝑡 ≥ 0

𝑃𝑃𝑊𝑊 𝑡𝑡 · 𝜂𝜂𝐷𝐷· 𝜂𝜂𝐸𝐸𝐸𝐸 � 𝜂𝜂𝐵𝐵· 𝜂𝜂𝑟𝑟𝑟𝑟 𝑡𝑡 + 𝑃𝑃𝐴𝐴 ∀ 𝑃𝑃𝑊𝑊 𝑡𝑡 < 0

• 𝑃𝑃𝑊𝑊 𝑡𝑡 = 𝑚𝑚𝑚𝑚 𝑡𝑡 + 𝑅𝑅 𝑡𝑡 · 𝑣𝑣(𝑡𝑡)
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Modeling Bicyclists

• Developed a dynamics-based cycling longitudinal motion model that 
captures cyclist training, pavement condition, gender, and grade 
effects.
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Modeling Results

• Baseline: Driving routes planned for influenced population
• Best Case: Influenced population stays home
• CASM_1: Driving, carpooling, walking, biking, and transit routes are 

planned for influenced population using an assumed PQoS cost 
function

• CASM_2_ECO: Same as CASM_1, but all influenced driving trips 
are controlled by INTEGRATION’s eco-routing algorithm

• CASM_1_INF: Driving, walking, biking, and transit routes are 
planned for the influenced population and the actual route is 
determined by a stated preference influence model.
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Modeling Results
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BASE BEST Mean Savings Upper Bound Lower Bound
Total Fuel (L) 3,195,637 2,905,967 9% 10% 8%
Total Delay (s) 897,198,320 619,162,732 30% 37.2% 24.2%

Results for AM Peak/Off peak

BASE BEST Mean Savings Upper Bound Lower Bound
Total Fuel (L) 3,487,982 3,162,249 9.3% 10% 8.3%
Total Delay (s) 1,350,493,856 961,607,536 28.8% 32.9% 24.7%

Results for PM Peak/Off peak



Modeling Results

• Upper bound benefits (remove 10% of the trips): 
– 9% reduction in energy and 30% reduction in delay

• Support for a 2-4% reduction in system-wide energy through 
messaging 10% (5% accept the recommendations) of the 
population without any monetary incentives
– Eco-routed vehicles saved 17% in energy consumption

• Eco-driving (optimizing throttle based on traffic signals and 
grades) does not produce benefits in highly congested areas
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INTEGRATED TRANSPORTATION AND 
COMMUNICATION SYSTEM MODELING
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Integrating Transportation and Direct C-V2X 
Communication Modeling

• Current communication tools are slow and not scalable
– Auto manufacturer modeled around 2000 vehicles traveling along a highway

• Traffic mobility and communication modeling were decoupled
– The simulation took several days to model 20 to 50 seconds of vehicle trajectories

– There is an urgent need to develop a scalable and integrated (coupled)
traffic and communication modeling tool

• The proposed effort addresses this urgent need
– We developed an integrated traffic and communication modeling tool

• Simulated an hour of the calibrated AM peak demand in downtown LA (145,000 
vehicles with up to 30,000 concurrent vehicles) 

– The simulation took 1.5 actual hours to simulate 1.86 simulated hours coupling 
every 1 to 30s while capturing millisecond packet and deci-second vehicle 
interactions
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Integrating Transportation and Direct C-V2X 
Communication Modeling

• The key contributions of this effort are:
– Developed a scalable analytical communication model that captures 

packet movement at the milli-second level
• Existing model could not model LA peak hour demand

– Coupled the communication and traffic simulation models in real-
time to develop a fully-integrated dynamic modeling tool

• Each model runs at a different modeling frequency
– Communication model abstraction runs at 1000Hz and simulation runs at 

10Hz
– Model coupling time step is dependent on the number of concurrent 

vehicles on the network
• Ranges from 1 to 30s
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Integrating Transportation and Direct C-V2X 
Communication Modeling

• The model computes the spatiotemporal PDR
– Can identify communication holes and hotspots
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Eco-routing Application Considering DSRC 
Communication to RSUs

• For the ideal communication assumption, increasing the market 
penetration resulted in improvements in the network-wide fuel 
consumption levels. 

– Market penetration levels between 20% and 30% resulted in acceptable 
performance.

• Using realistic communication modeling showed a trade-off when 
increasing the market penetration of CVs. 

– At low penetration rates, the performance is acceptable because of the low 
packet drop rates. 

– Increasing the market penetration level results in increasing the fuel consumption 
because of routing errors caused by delayed and dropped data packets.

• The VANET communication network performance (packet drop and 
delay) can have significant effects on a dynamic eco-routing system 
performance, especially in highly congested networks.

– In some cases, resulting in network-gridlock.
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DEVELOPING AN ECO-COOPERATIVE 
AUTOMATED CONTROL SYSTEM (ECO-CAC)
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Proposed Eco-CAC System
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Local Controller (Uninterrupted Flow): Eco-CACC-ULocal Controller (Interrupted Flow): Eco-CACC-I

Upper Level Strategic Controller

Vehicle Dynamics 
Optimization

Vehicle Dynamics 
Optimization

Real-time Data Fusion Strategic Speed 
Controller

1. SPaT Data
2. MAP Data

3. Topographical Data

1. User Input
2. Topographical 

Data

Eco-router

Lower Level Controller



CAV Eco-routing Algorithm
• Developed a vehicle-agnostic approach to collect transient vehicle 

data in real-time
– Entire vehicle trajectory captured using 8 link-specific variables

• Data are sent to the cloud to be fused with existing data and then 
sent back to CAVs
– Vehicle-specific link cost computed using the combination of vehicle 

parameters and the 8 link-specific variables
• Algorithm was implemented in INTEGRATION to generate

– A dynamic, stochastic, incremental, multi-class, and user-equilibrium traffic 
assignment 

• Minimum paths computed using the Dijkstra algorithm
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CAV Eco-routing Algorithm

• BEV eco-routing conflicts with TT-optimum routing
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CAV Eco-routing Algorithm

• We introduced a multi-objective router that combines travel time and 
energy consumption
– 𝐶𝐶𝑙𝑙 = 1 − 𝛼𝛼 × 𝑇𝑇𝑇𝑇𝑙𝑙 + 𝛼𝛼 × 𝐸𝐸𝑙𝑙 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
• Considered: 𝛼𝛼 = 0.01 (MO1) and 0.05 (MO2), 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 $10/h, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

$0.1319/kWh
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Strategic Speed Controller Field Testing

• Developed SPD-HARM algorithm
• I-66 test bed proof of concept and 

field testing
– Supported Leidos and FHWA run 

three vehicles across all three lanes 
of I-66

• Conducted simulation testing 
considering different levels of market 
penetration
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Strategic Speed Controller Testing

• The SH algorithm increases the discharge rate of the bottleneck. 
– Increases by up to 2% with reductions in vehicular delay by approximately 

20%;
• The algorithm reduces vehicle emissions and fuel consumption levels. 

– At MPR=100%, CO2 and fuel consumption can be reduced by 
approximately 3.5%;

• When CAV MPR is very low, benefits of the SH algorithm cannot be 
observed, as non-CAV vehicles do not follow the control algorithm;
– An MPR=10% is sufficient for the SH algorithm to work successfully. 

• For the study section, a CAV flow of 400 veh/h (167 veh/h/lane) is 
sufficient to obtain significant savings in trip delays, emissions and fuel 
consumption levels.
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Strategic Speed Controller
• Based on network gating control using the NFD

– Use CV data to construct NFDs
– Identify congested regions in real-time
– Identify gating points to control CAV speeds
– Traffic gating using SPD-HARM
– Integrating traffic control with dynamic routing to 

develop fully-integrated network controllers
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Strategic Speed Controller: Arterials

• An arterial strategic speed controller was developed 
that regulates the traffic stream speed upstream of 
traffic signals entering a protected region

– Gating of traffic entering the protected region
– Computation of gating rate requires an estimate of the 

traffic signal timings
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Improvement (%)

Avg. Travel Time (s) 15.17
Avg. queued vehicles (veh) 18.22
Total CO2 (g) 6.68
Total Fuel (l) 6.71

No SH SMC-SH Improvement (%)

Avg. Travel Time (s/veh) 757.44 626.65 17.27
Avg. Total Delay (s/veh) 299.42 24.97 18.18
Avg. Stopped Delay (s/veh) 144.85 126.38 12.76
Avg. Accel/Decal delay (s/veh) 154.57 118.60 23.27
Avg. Fuel  (L/veh) 0.45 0.42 5.91
Avg. CO2 (g/veh) 1029.38 956.89 7.04

Protected Network Performance

Network-wide Performance



Strategic Speed Controller: Freeways
• A freeway strategic speed controller was developed for 

use on freeways
– Automatically identifies the onset of congestion on a 

roadway segment
– Starts regulating the speed on the link upstream of the 

congested link
– SPD-HARM is activated and de-activated dynamically and 

at different locations along the freeway
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Improvement (%)

Avg. Travel Time (s/veh) 20.48
Avg. queued vehicles (veh/link) 21.63
Avg. CO2 (g/link) 3.75
Avg. Fuel (L/link) 2.56

No SH F-SMC-
SH

Improvement 
(%)

Avg. Travel Time (s/veh) 1034.27 908.37 12.17
Avg. Total Delay (s/veh) 557.46 442.25 20.67
Avg. Stopped Delay (s/veh) 256.77 155.13 39.58
Avg. Fuel (L/veh) 1.16 1.12 2.60
Avg. CO2 (g/veh) 2482.13 2400.16 3.30

Freeway Network Performance
Network-wide Performance



Eco-CACC-U Controller
Potential Benefits
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HC CO NOx CO2 Fuel

VT-Micro Hwy

Top 1 % 16 % 19 % 4 % 3 % 4 %

Top 2 % 24 % 30 % 7 % 6 % 7 %

Top 5 % 39 % 47 % 17 % 13 % 14 %

Top 10 % 54 % 64 % 32 % 23 % 25 %

CMEM24 Hwy

Top 1 % 20 % 38 % 30 % 3 % 5 %

Top 2 % 32 % 63 % 50 % 6 % 9 %

Top 5 % 52 % 80 % 73 % 14 % 17 %

Top 10 % 81 % 84 % 90 % 25 % 28 %



Eco-CACC-U Controller
Impact of Platooning Parameters on Energy Consumption
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• The behavior of ICEVs and BEVs in platoons is very 
different
– Optimum speed for ICEVs is much higher than that for BEVs
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Eco-CACC-U Controller
Simulation Testing

• We developed a platooning controller that attempts to 
maintain relatively small time gaps between CAVs

• We assumed that a vehicle attempting to join a platoon can
– increase its velocity by up to 7% beyond the speed limit (i.e., 

platooning speed) for a maximum duration of 6.5 s. 
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y = -8.9793x + 0.8381
R² = 0.8658

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

2.00

0% 20% 40% 60% 80% 100%

Ch
an

ge
 (%

)

MPR

y = -3.5268x + 0.3647
R² = 0.2319

-6.00

-4.00

-2.00

0.00

2.00

4.00

0% 20% 40% 60% 80% 100%

Ch
an

ge
 (%

) MPR

Energy Consumption Travel Time



ECO-CACC-I CONTROLLER
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Eco-CACC-I Overview

• We developed an Eco-CACC system to compute the 
optimum vehicle trajectory
– Using I2V and V2V communication
– Explicitly optimizing vehicle fuel consumption
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Eco-CACC-I Queue Prediction
• The model predicts the time at which the queue will be 

dissipated using kinematic wave theory
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Normal Driving Eco-CACCEco-CACC with queue prediction



Eco-CACC-I Modeling Evaluation

• Benefits increase with increased market penetration
• Multi-lane approaches more challenging to deal with
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Eco-CACC-I Field Implementation and Testing
• The system was implemented in an 

ACC-equipped vehicle and tested on 
the VDOT Smart Road
– A total of 32 subjects were recruited

• Equal male and female participants
– Four scenarios:

• S1: Uninformed driver
• S2: In-vehicle indication count-down 

display
• S3: In-vehicle audio speed 

recommendation every 2 seconds
• S4: L2 automation from 250m upstream 

of the intersection to 180m downstream
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Eco-CACC-I Field Results
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• The automated Eco-CACC 
system reduced fuel 
consumption levels and travel 
time by up to 39 and 9 
percent, respectively.

• The manual Eco-CACC 
system reduced fuel 
consumption levels and travel 
time by nearly 13 and 9 
percent, respectively.



Eco-CACC-I Considering Multiple Intersections
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CONNECTED VEHICLE TRAFFIC SIGNAL 
CONTROL
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De-centralized Traffic Signal Control
• Developed a novel acyclic Nash Bargaining traffic signal control 

system
– Objective is to control the queues on the various traffic signal approaches

– Abandons the concept of a fixed cycle length
• Extends or ends various phases using the NB technique
• Jumps directly to phases that are needed

• The utilities for each player (phase) can be defined as the 
estimated sum of the queue lengths in each phase after applying a 
specific action.
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De-centralized Cycle-free Traffic Signal Controller

• System tested on numerous networks:
– Main St., Blacksburg
– Blacksburg
– Downtown LA

5/17/2021 Advancing Transportation Through Innovation

47



Thank you!

Hesham A. Rakha
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